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Abstract--A second-order finite difference procedure is presented for the inverse determination of the 
thermal conductivity in a one-dimensional heat conduction domain. In this approach, the thermal con- 
ductivity of the material is reconstructed by using the available temperature data at discrete grid points. 
The accuracy of the computational algorithm is investigated. To confirm the validity of the numerical 
procedure, various comparative examples are presented. The close agreement between the current results 
and the exact solutions confirms that the proposed finite difference procedure is an effective technique for 
the inverse determination of thermal conductivity. The method is applicable for linear and nonlinear 
spatially dependent, as well as temperature dependent, thermal conductivities. In addition, a key feature 
of the present technique is that a priori knowledge of the functional form for the thermal conductivity is 

not required. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Precise knowledge of the thermophysical properties 
for composite materials is essential in many thermal 
management system analyses. An increasing effort in 
the past decade has been devoted to expanding our 
knowledge of material properties due to advanced 
technological developments in material sciences [1- 
5]. Specifically, an accurate measurement of thermal 
conductivity is imperative to achieve an optimal ther- 
mal control system. 

Inverse determination of the thermal conductivity 
from measured temperature profiles has been the topic 
of research by many investigators [6-10]. Most of 
these studies assumed that the thermal conductivity 
is only a function of the spatial coordinate [11-13]. 
However, thermal conductivities are temperature 
dependent quantities in most practical engineering 
applications [14, 15]. The contribution of the present 
work is to present a second-order accurate finite 
difference procedure for the determination of the ther- 
mal conductivity, which can be either a constant or 
spatially- or temperature-varying quantity. A rigorous 
analysis is presented to establish the uniqueness con- 
ditions for the numerical computational approach. 

Recently, Lam and Yeung [16] employed a first- 
order numerical method to determine the thermal con- 
ductivity in a one-dimensional heat conduction 
domain. This paper extends their earlier results, exam- 
ining the feasibility of using a higher order finite 
difference technique to determine the thermal con- 
ductivity in a heat conduction domain. The thermal 
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conductivity is assumed to be either a function of the 
spatial coordinate or temperature. In the past, most 
studies employed an optimization technique to obtain 
a least squares approximation of the conductivity 
function. In this study, a second-order finite difference 
procedure (a direct approach compared to the least 
squares technique) is used to discretize the heat con- 
duction equation. This converts the governing partial 
differential equation to a system of linear equations 
[17, 18]. As a result, the conductivity function can be 
obtained by solving the system of linear equations. 
The advantage of this approach is that no prior infor- 
mation is required on the functional form of the ther- 
mal conductivity. 

Several heat conduction problems have been tested 
with the procedure for spatial- and temperature- 
dependent thermal conductivities. The parameter esti- 
mation problem can be either linear or nonlinear. The 
estimated thermal conductivity is verified by com- 
paring with the exact function to confirm the validity 
of the method. Furthermore, the order of accuracy of 
the numerical procedure is discussed. 

2. ONE-DIMENSIONAL HEAT CONDUCTION 
EQUATION 

In order to illustrate the basic concepts associated 
with the proposed finite difference procedure for the 
inverse determination of the thermal conductivity for 
a heat-conduction system, it is interesting to study a 
one-dimensional (0 ~< x ~< 1), time-dependent non- 
homogeneous problem with heat generation. Figure 1 
depicts the one-dimensional region R under con- 
sideration. The temperature distribution of the reed- 
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Fig. 1. Region of one-dimensional heat conduction. 

ium is initially prescribed over R3. For  times t > 0, the 
boundaries at x = 0 and x = 1 are subjected to a set 
of  boundary conditions over R~ and R2 of the region 
R, where R = {(x, t) : 0 < .v < 1, t > 0}. Everything 
outside of  the region is assumed to be at zero tem- 
perature. In addition, the product of  the material den- 
sity and heat capacity is considered as unity. The 
general one-dimensional heat-conduction equation 
can be stated as 

ST(x, t) ? [ ~ T(.v, t)~ 

L k(.v, I) ~ -  J = ,q(.v, l) 8t 

in O < . v <  1 , I > 0 ,  (I) 

where the initial condition is 

T(.v, 0) =/i,~(-v) for 0 ~< x ~< 1. (2) 

For  the above second-order partial differential 
equation, two boundary conditions are required. 
These boundary conditions can be categorized as 
follows : 

(1) boundary condition of the first kind in which 
the temperature is prescribed along the boundary sur- 
face, such as 

T(x,t) i sg i vena tx=O or x =  1 f o r t > 0 ,  

(3a) 

(2) boundary condition of  the second kind in which 
the heat flux is applied at the boundary surface, such 
a s  

? T(.v. t) . 
?x is given at . v = 0  or .v=  1 for t > 0 :  

(3b) 

(3) boundary condition of the third kind in which 
heat dissipation by convection from a surface to a 
surrounding environment at zero temperature is speci- 
fied, such as 

? T(x t) 
k(.v,t)----~ ' + T(x,t) 

( . V  

is given a t . v = 0  or x -  1 f o r t > 0 .  (3c) 

The main purpose of  this study is to determine the 
conductivity, k(x, t), at any point within the domain 
R = ~(x, I) : 0 < .v < 1, t > 0} with the assumption 
that the temperature, T(x, t), is known at discrete grid 
points. 

3. INVERSE DETERMINATION OF THERMAL 
CONDUCTIVITY 

In this section, a brief discussion of  the require- 
ments which lead to a unique solution of  the inverse 
heat conduction problem is first addressed. Then, a 
finite difference procedure for the calculation of  the 
thermal conductivity function given the time-depen- 
dent temperature distribution, T(x, t), at discrete grid 
points will be presented. 

Necessary condition jbr the uniqueness o/ thermal 
conductivity 

Throughout  this section, the temperature, T(x, t), 
is assumed to be known over the entire domain. As 
a result, derivatives of  the temperature (e.g. 8T/'Sx, 
?2T/?x2 and OT/&) can also be calculated based on 
the available temperature profile. The general one- 
dimensional heat conduction equation (1) can be 
rewritten as 

~T(x, t ) ] =  (~,T(x, t) 
f v k ( x ,  t) ~'~x J Pt g(x,t). (4) 

Consider the above partial differential equation at 
t = £ this nonhomogeneous ordinary differential 
equation takes the form 
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; k(x,i+- L a T(x, i) 1 a T(x, i) = ~ -g(x,I). at (5) 
The general solution of the nonhomogeneous ordi- 

nary differential equation is the sum of the particular 
solution of the nonhomogeneous equation and the 
general solution of the homogeneous equation. 
Hence, let us focus on the homogeneous case, 

; 
[ 
4x, t’) yy 

wx, 0 = o, 1 
This implies, 

2 T(x, i) 
k(x, i) 7 = C, 

Y 

(6) 

where C is an arbitrary constant. If the term 
aT(x, t)/a.x is nonzero over the entire interval [0, 11, 
one can rewrite the above equality (7) as, 

c 
4x, t) = aT(_x,i). 

ax 

(8) 

Since c’ is an arbitrary constant, this implies that 

there are infinitely many solutions for the homo- 
geneous equation (6). Moreover, the implication is 
that the nonhomogeneous ordinary differential equa- 
tion (5) also has infinitely many solutions. 

Based on the above discussion, a necessary condi- 

tion for having a unique solution k(x, t) of the ordin- 
ary differential equation (5) can be stated as follows. 

There exists x0 in the interval [0, 11, such that 

aT(-~o, 0 o, 

ax (9) 

Recall that this discussion is based on the assump- 

tion that only the temperature profile is known over 
the entire domain R. However, this constraint can be 
relaxed if, for instance, both temperature and surface 
heat flux at either boundary are known. In such a 
case, the constant C in equation (8) can be replaced 
by the surface heat flux. Equation (9) can then be 
eliminated as the necessary condition for a unique 
solution. Therefore, three cases will be discussed in 
detail below for the inverse determination of the ther- 
mal conductivity ; the first based on temperature data 
alone, and the second and third on a combination of 
temperature and surface heat flux at either boundary. 

Mathematical jbrmulation 
In this section, a numerical procedure based on 

discrete temperature is presented for the inverse deter- 
mination of the thermal conductivity function. First, 
we discretize the entire domain {(x, t) : XE [0, l] and 
t E [0, co)} with mesh width Ax in the spatial direction 
and At in the time direction, grid points x, = j* Ax 
(wherej=O,l,...,Nand N-Ax= 1) and ti=i*At 
(i = 0, l,2,. .). The present procedure will assume 

that the temperature, T(x, t), is known at the grid 

points, (x,. tJ. 
Now, we will demonstrate the discretization of the 

governing equation (1). Suppose (x, tJ is an interior 
point (i.e. 0 < j < N and i > 0) and the governing 
equation is fixed at this particular point ; we then have 

ar a aT 1 --- 
aY kz = sl. at, , [ 1 , (10) 

By applying forward differencing to the time- 
derivative and expanding the space-derivative, equa- 
tion (10) can be rewritten as 

T’+’ -T ~-&[k:+,*(7.;+,-T:,) 
At 

+4k;*(T;+, -2Tj+T;_,)+k;__, 

*(T;-, -T;+,)l =s:. (11) 

Now, the thermal conductivity can be written in 
terms of the temperature and internal heat generation 
in the following form : 

k;_, .(T;_, -T;+,)+4kj*(T;+, -2T;+T;_,) 

+k:+, *(T;+, -T;m,) 

= 4Ax2 * T”‘-T u-g; , 
At 1 (12) 

with the assumption that (x,, t,) is an interior point 
(i.e. 0 < j < N and i > 0). 

Next, we will discuss the discretization of the gov- 
erning equation at the boundary. For simplicity, only 
the boundary R, will be considered. Readers can easily 
extend the discretization to the other boundary (R,). 

Suppose (x,, ti) is on R, (i.e. j = 0, i > 0). Then we 
have the following : 

(13) 

+kb*(T’,--3T’,+ZTb)]. (14) 

By substituting equations (13) and (14) into equa- 
tion (lo), the finite difference equation at the bound- 
ary surface R, takes the form 

T’+‘-_T 
0 0 

- &[k; * (T; - Tb) 
At ,2 

+kf*(T;-3T; +2Tb)] =gb, (15) 

which can be rearranged as 

k;*(Tl-3T; +2T;)+k; *(T; -T;) 

(16) 
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Similarly, for the finite difference equation at the 
boundary surface R2, one can easily obtain the fol- 
lowing equation : 

k'N , ' ( T ; . . , - T : , , ) + k : , . ' ( T [ v  2 3T!,,. ,+2T I , , . )  

1 At ,qi~ • ( 17) 

Computational algorithm 
The numerical procedure for the inverse deter- 

mination of  the thermal conductivity is summarized 
below. Suppose we are interested in solving the inverse 
heat conduction problem at t = Fby assuming a tem- 
perature, T(x, t) ,  which is known only at the grid 
points. By using equations (12), (16) and (17), one 
can create the following system of linear equations : 

Ax = b. (18) 

where A is an ( N +  1 ) x ( N +  1) matrix and x and b are 
( N +  1) vectors. For  simplicity, we assume that the 
subscript of  A, x and b range from 0 to N as follows : 

a i l , o  a o  I / 

/ a l o  a l l  [ll.2 

, 4 =  i 

¢1% I .,% 2 

<7"> X =  , h =  

, .  ,%: / 

a v  i. % I ~/~ I% 

aA,>, I ¢1%, \ 

b 0 

bi )" 

(1) To set up A and b. Case (i), temperature data is 
avai lable--suppose there exists an integer, M, where 
0 < M < N,  such that 

T(.\%,. I. [ ) -  T(.\-,~ ,, 7) = 0 (19) 

T ( X M . , . [ ) - - 2 T ( x w , [ ) + T ( x M  , . t )  # 0 .  (20) 

The above requirements are equivalent to the 
necessary condition given by equation (9), so that 
dT/dx  = 0 at grid point xm. For  further information 
see Ref. [16]. 

F o r j  = 0, 

a0.0 = T(x2,~) 3T(x~,~)+2T(x. ,Z) ,  (21) 

a o .  1 = T ( x  I , [ )  - -  T(xl), f). (22) 

bo = Ax2[  T(x- ' ' 'F+At) -  T(x° ' f )  ] 
At ,q( xo,  f) . 

(23) 

For  j = 1 . . . . .  N- -  1, 

a / :  i = T (x ,  ,,Z) T(x/+j,7), (24) 

a/, /= 4[T(x: ~. 7-) - 2 T ( x / ,  T)+ T(x:, ~, ~)], (25) 

a/4. ,  = T(X/. j, i) -- T(x<_ I, t), (26) 

• [ T ( x : ,  F+ A t ) -  T(x / ,  T) - g ( x / ,  [)~. 
b, = 4Ax 2 L At  J 

(27) 

F o r . / =  N, 

ax.v ~ = T(x:~ 1 ,7 ) -  T(x,,, T), 

a~., = T(x,, 2, f ) - 3 T ( x , ,  i , f ) + 2 T ( x x , [ ) ,  

• 2VT(xN,  [ - + A t ) - -  T(XN, i )  
b~ = a x  [ A t  

(39) 

- g( x,v, 7) ]  

(40) 

Case (iii), temperature data and heat flux at x = 1 
are available temperature data and surface heat flux, 
q(x,., t-), are known. 

F o r . / =  0, 

ao.o = T ( x 2 , i ) - 3 T ( x , , T ) + 2 T ( x o ,  F), (41) 

ao,, = T(xl,  7)-- T(x0, T), (42) 

(37) 

(38) 

F o r . / =  N, 

a~.~ ~ = T(x~. ~, f ) -  T(xx,  7), (28) 

a~.% = T(xv 2 , i ) - 3 T ( x x  ,,Z)+2T(x~,, f), 

(29) 

/ '%= A"2IT(x"F+At)-At T(x,,,,T) _,q(x,,,,f)l" 

(30) 

Case (ii), temperature data and heat flux at x = 0 
are a v a i l a b l ~ i n  addition to the temperature data. 
the heat flux, q, is known at (x0, t-). 

F o r . / =  0, 

a,,., - 1. (31) 

a<~,l = O, (32) 

q (33) h,i = T(xl,  7) -- T(xo, i)" 

Ax  

F o r . / =  1 . . . . .  N -  1, 

a:./ i = T(xj ~, T ) -  T(x/+~, T), (34) 

a ~ / = 4 [ T ( x /  , , i ) - 2 T ( x j ,  f ) + T ( x : + , , f ) ] ,  (35) 

a/./~ i = T(xi+ i, t ) -  T(x~ t, t), (36) 

LF T(x/'F+ At)At - T(x/, ~) - g ( x / ,  i) 1" h, = 4Ax 2.- 
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• 2 l-T(x0,/-+At)~- T(x0, 7) 1 
bo = ~ x  L g(xo, 7)_, (43) 

For j =  1 . . . . .  N - l ,  

aj j_ ,  = T(X ~_ ,, ?) - T(Xj+ 1,7), (44) 

a/.j = 4[T(xj ,, T)-2T(xj,  7) + T(xj+~, 7)], (45) 

ai.j+l = T ( x i + I , 7 ) - T ( x j  1,7), (46) 

It(x,,/-+ At)- T(x, 7) -g(x,, 7) ~. 
b, = 4Ax 2 k At J 

F o r / =  N, 

(47) 

aN, N I = 0 ,  (48) 

aN, N = 1,  (49) 

bx = q (50) 
T(XN,  l)  -- T (X  u l ,  t )"  

Ax  

(2) The above system consists of a tridiagonal sys- 
tem of linear algebraic equations. The solution x is the 
heat conductivity. A FORTRAN subroutine based on 
the Thomas algorithm [19] can be found in the popu- 
lar heat conduction text by Ozisik [20] for solving a 
tridiagonal system of equations. 

4. ERROR ANALYSIS OF THE NUMERICAL 
PROCEDURE 

Understanding and controlling the numerical error 
is essential for a successful solution of the finite differ- 
ence equation. In this section, a detailed error analysis 
will be presented from which we can conclude that the 
numerical procedure is at least second-order accurate. 

By applying Taylor's expansion to equation (12), 
we have the following : 

k i . i - r ~ + ,  , , ( T , - ,  ) + 4 k j ' ( T j + ~ - - 2 T ' , + T ~  ,) 

[ T  i+l T i ) 
i i i 4 2 . ~  J -- J i +k j÷ l  • (Tj__I -- T j _ j ) - -  A x  gj 

- -At 

= O ( A x 3 + A t ' A x 2 ) .  (51) 

If we let At = Ax2, then the local truncation error 
(LTE) within the interior points due to the finite diff- 
erencing is O(Ax3). 

Next, we analyze the LTE at the left boundary, R1. 
By applying Taylor's expansion to equation (16), one 
may obtain the following equation : 

k'0 "iT', 2 -  3Ti1 +2T~) +Ul" (T~ - T~) 

• (T{~ +l - T{~ ) 
- -Ax2 \ -At gJo = O ( A x 2 + A t ' A x 2 ) .  (52) 

If we let At = Ax 2, the LTE at the R1 boundary 
surface due to finite differencing is O(Ax2). A similar 

analysis can be performed to show that the local trunc- 
ation error at the R2 boundary surface is O(Ax2). 

At this point, we have shown that the error of the 
discretization of the governing equation over the 
domain R U R~ U R2 is O ( A x 2 ) .  Therefore, the system 
of linear equations (18) is different from the original 
equation by an error O(Ax2), i.e. 

A x  = b-I- O(Ax2).  (53) 

By solving the system of linear equations (18), the 
solution x has an error O(Ax2). This shows the numeri- 
cal procedure is second-order, which implies that the 
rate of convergence of the proposed procedure is 
second-order. 

5. ILLUSTRATIVE NUMERICAL EXAMPLES 

The finite difference procedure described above for 
the inverse determination of the thermal conductivity 
in a one-dimensional heat conduction domain was 
programmed in FORTRAN 77. The procedure is 
based on the computational algorithm given by equa- 
tions (19)-(50) for the formulation. The computations 
were performed using a SUN Sparcl0 Workstation. 
The numerical results were obtained in double- 
precision arithmetic. 

To show the applicability of the proposed 
procedure, five distinct test cases were solved. Test 
cases include constant, spatially dependent, or tem- 
perature dependent quantities that are reconstructed 
from discrete temperature data. The heat conduction 
problems investigated are tabulated in Table 1. 

The exact temperature and thermal conductivity 
used in the test case are pre-selected profiles that 
satisfy the governing heat conduction equation and 
the boundary conditions, as well as the initial 
condition. The simulated temperature data are gen- 
erated from these pre-selected temperature profiles. 
The numerical procedure is tested by computing the 
thermal conductivity from these pre-selected tem- 
peratures and its accuracy is assessed by comparing 
the calculated results with the pre-selected thermal 
conductivity profiles. 

As discussed above, the calculations are performed 
assuming that the temperature data are available at 
discrete grid points within the entire domain. The first 
three examples assume only the temperature data is 
available, hence the necessary condition 8T/Sx  = 0 
needs to be satisfied. Test cases 4 and 5 assume the 
heat fluxes are known at the left and right boundaries, 
respectively, in additional to the temperature data. 
The condition of OT/Sx = 0 is not a requirement for 
these two cases. 

Example  1--constant  thermal conductivity 
Consider a slab, 0 ~< x ~< 1, with an initial tem- 

perature distribution which varies with the distance. 
For time t > 0, the boundaries at x = 0 and x = 1 are 
kept at zero temperature. To determine the thermal 
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conductivity, the region 0 ~< x ~< 1 is divided into 
N = 10, 20, and 40 intervals in the calculations which 
correspond to a mesh size of  Ax = 0.100, 0.050 and 
0.025, respectively. By comparing these predictions to 
the exact solutions for the conductivity, k(x, t) = 2, 
the maximum error corresponding to these runs are 
0.2575, 0.0685 and 0.0174. These results clearly dem- 
onstrate that the numerical error decreased with the 
mesh size. Note  that the maximum error also indicates 
that the convergent rate is (Ax): and the numerical 
procedure is second-order accurate. The results of  the 
thermal conductivities for mesh size Ax = 0.1 and 
t = 0.2 are presented in Fig. 2(a). The results from the 
present study are in very good agreement with the 
exact solution. 

Example 2--spatially-dependent thermal conductivity 
A plane wall, 0 ~< x ~< 1, is initially at zero tem- 

perature. For  time t > 0, heat is generated in the solid 
at a variable rate of  g(x, t), the boundaries at x = 0 
and x = 1 are subjected to time-varied temperatures. 
To determine the thermal conductivity, the spatial 
coordinate 0 ~< x ~< 1 is divided into N = 10, 20 and 
40 intervals that correspond to Ax = 0.100, 0.050 and 
0.025, respectively. The maximum errors for these cor- 
responding cases are 0.0073, 0.0018 and 0.0004. Note  
that the accuracy of  the prediction increases with 
decreasing grid size, as expected. The calculated ther- 
mal conductivity is compared with the exact function 
and the results are plotted in Fig. 2(b) for mesh size 
Ax = 0.1 and t = 0.2. Clearly, these numerical results 
are in excellent agreement. After examining the 
maximum errors for various mesh sizes, it is clear 
that the convergent rate of  the proposed numerical 
procedure is second-order. 

Example 3--temperature-dependent thermal con- 
ductivity 

A slab, 0 ~< x ~< 1, is initially maintained at a tem- 
perature which varies with distance. For  time t > 0, 
heat is generated in the solid at a variable rate of  
g(x, t). The derivative of  temperature is prescribed at 
the boundary x = 0, while the boundary x = 1 dis- 
sipates heat by convection into an environment of  zero 
temperature. Both conditions vary with time along the 
surfaces. Again, the spatial coordinate 0 ~< x ~< 1 is 
divided into N = 10, 20 and 40 intervals in the cal- 
culations with a spacing of  Ax = 0.100, 0.050 and 
0.025. The corresponding maximum errors for these 
three runs were 0.1031, 0.0276 and 0.0070. The results 
are shown in Fig. 2(b) for Ax = 0.1 and t = 0.2. The 
inverse solutions for thermal conductivities at various 
times are shown in Fig. 3(a). The agreement between 
the calculated and exact values is very good. 

Example ~-spatially-dependent thermal conductivity 
A plane wall, 0 ~< x ~< 1, is initially maintained at a 

prescribed temperature which varies with distance. 
For  time t > 0, the boundaries at x = 0 and x -- 1 are 
subjected to prescribed temperatures, which vary with 
time. In addition to the temperature measurements, 
the heat flux is also known at the left boundary,  x = 0. 
Therefore, the condit ion OT/Ox = 0 needs not  be a 
requirement for the unique solution of  the thermal 
conductivity. The calculated maximum errors on the 
estimated conductivity were found to be 0.0385, 
0.0099 and 0.0025 that correspond to Ax = 0.100, 
0.050 and 0.025, respectively. Again, as the mesh size 
decreases, the accuracy of  the approximation 
increases. The calculated thermal conductivities from 
the present study are in good agreement with the ana- 
lytical solutions and the comparison is shown in Fig. 
2(a) for Ax = 0.1 and t = 0.2. 

Example 5--temperature-dependent thermal con- 
ductivity 

Consider a slab, 0 ~< x ~< 1, that is initially at a 
prescribed temperature distribution and which varies 
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pre-selected tempera ture  profiles. The error  associated 
with the measurement  of  tempera ture  would decrease 
the accuracy of  the calculat ion of  conductivity.  There- 
fore, in an effort to quantify a realistic error  in con- 
ductivity, the exact tempera ture  inputs  (To~,+,) used 
here will be modified by adding r a n d o m  errors to 

- simulate experimental  measurements  (T+~p) [21] 

T~p = T~ ...... +~a, (54) 

where ~ is the standard deviat ion o f  the measurement 
error  which is assumed to be the same for all measure-  
ments.  For  normal ly  distr ibuted errors  with zero mean  
and a 99% confidence, the value of  e, lies in the range 

- 2 . 5 7 6  < ~ < 2.576. (55) 

The product  of  ea represents the tempera ture  
.0 

measurement  errors. In order to test the influence of  
the experimental  errors on the inverse analysis, the 
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Fig. 3. Comparison of thermal conductivity at various time 
intervals for (a) example 3 ; (b) example 5. 
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with distance. For  time t > 0, the boundary  at x = 0 ~ 1 .2-  
is subsequently kept  at zero temperature,  while the 
boundary  surface at  x = 1 is subjected to a prescribed 
temperature ,  which varies with time. In addi t ion to ~ 1 .0-  
the tempera ture  measurements ,  the heat  flux is known " 
at  the right boundary ,  x = 1. Therefore,  the condi t ion "~ 
~Tl~x = 0 needs not  be a requirement  for the unique ~ 0.8,  
solution of  the thermal  conductivity.  The results are o ~ 
shown in Fig. 2(b) for t = 0.2 and Ax = 0.1. Figure k 
3(b) presents a compar ison  of  thermal  conductivit ies ~ 0 . 6 -  
from the present study with the analytical solutions for 
various time intervals. Again the compar ison  clearly a~ 
demonst ra tes  the accuracy of  the present  method.  [" 0.4 

6. SENSIT IV ITY  A N A L Y S I S  
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The simulated tempera ture  da ta  used in the inverse 
analysis of  thermal  conductivi ty were obta ined from 
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Fig 4. Effect of temperature measurement error on the ther- 
mal conductivity with Ax = 0.1 and t = 0.2 For (a) examples 

I and 4 ; (b) examples 2.3 and 5. 
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test cases described previously will be repeated by 
incorporating the measurement errors in the simulated 
temperature measurements. Under  the most strict 
conditions, the simulated temperature data (Toxp) are 
generated by using the exact temperature profiles 
(Table 1) and equation (54) with ~r = 0.01 (Texact)ma x 

as well as e = 2.576 or - 2 . 5 7 6  in the inverse analysis. 
The effects of  temperature measurement error on 

the inverse analysis are shown in Fig 4(a, b). Clearly, 
the estimated thermal conductivities are in good 
agreement with the exact profiles. 

7. CONCLUSIONS 

A second-order finite difference procedure has been 
successfully developed for the inverse determination 
of  the thermal conductivity of  a one-dimensional 
medium. The unknown thermal conductivity is recon- 
structed using available temperature data or a com- 
bination of  temperatures and surface heat flux. The 
estimated thermal conductivities were verified by com- 
paring the results with the analytical solutions. The 
close agreement between the current results and the 
exact solutions confirms that the proposed finite 
difference scheme is an accurate technique for the 
inverse determination of  thermal conductivities. The 
algorithm is straightforward and easy to implement 
and requires relatively little computer  time for the 
computations.  

A special feature of  the approach is that no prior 
information is required about the functional form of  
the unknown conductivity. The algorithm is useful 
and attractive for heat transfer inverse analysis due to 
its simplicity, stability and high speed. The technique 
is applicable to linear and nonlinear spatially, as well 
as temperature-dependent thermal conductivities. 
Al though the present algorithm is developed for the 
inverse analysis of  one-dimensional heat transfer, it 
can be extended to solve two-dimensional geometries. 

REFERENCES 

1. Y. Bayazitoglu, P. V. R. Suryanarayana and U. B. 
Sathuvalli, A thermal diffusivity determination pro- 
cedure for solids and liquids, J. Thermophys. Heat Trans- 
fer 4, 462-469 (1990). 

2, J. Murphy and Y. Bayazitoglu, Laser flash thermal 
diffusivity determination procedure for high-tem- 
perature liquid metals, Numer. Heat Transfer A 22, 109- 
120 (1992). 

3. R. G. Nagler, Transient techniques for determining the 
thermal conductivity of homogeneous polymeric 

materials at elevated temperatures, J. Appl. Polymer Sci. 
9, 801-819 (1965). 

4. E. A. Artyukhin and A. V. Nenarokomov, Coefficient 
inverse heat-conduction problem, J. Engn 9 Phys. 53, 
1085-1090 (1987). 

5. Y. Jarny, D. Delauany and J. Bransier, Identification of 
nonlinear thermal properties by an output least square 
method, Proceedings, 8th International Heat Transfer 
Conference, pp. 1811-1816 (1986). 

6. Y. M. Chen and J. Q. Liu, A numerical algorithm for 
remote sensing of thermal conductivity, J. Comput. Phys. 
43, 315-326 (1981). 

7. Y. Jarny, M. N. Ozisik and J. P. Bardon, A general 
optimization method using adjoint equation for solving 
multidimensional inverse heat conduction, Int. J. Heat 
Mass Transfer 34, 2911~919 (1991). 

8. O. M. Alifanov and V. V. Mikhailov, Solution of the 
nonlinear inverse thermal conductivity problem by the 
iteration method, J. Engng Phys. 35, 1501-1506 (1978). 

9. P. Tervola, A method to determine the thermal con- 
ductivity from measured temperature profiles, Int. J. 
Heat Mass Transfer 32, 1425-1430 (1989). 

10. T. Ouyang, Analysis of parameter estimation heat con- 
duction problems with phase change using the finite 
element method, Int. J. Numer. Meth. Engng 33, 2015 
2037 (1992). 

11. W. H. Chen and J. H. Seinfeld, Estimation of spatially 
varying parameters in partial differential equations, Int. 
J. Control 15, 487-495 (1972). 

12. S. Kitamura and S. Nakagiri, Identifiability of spatially- 
varying and constant parameters in distributed systems 
of parabolic type, S l A M  J. Control Optimiz. 15, 785 
802 (1977). 

13. J. Lund and C. R. Vogel, A fully-Galerkin method for 
the numerical solution of an inverse problem in a para- 
bolic partial differential equation, Inverse Problem 6, 
205 217 (1990). 

14. G. R. Richter, A generalized pulse-spectrum technique 
(GPST) for determining time-dependent coefficients of 
one-dimensional diffusion equations, S l A M  J. Sci. Stat. 
Comput. 8, 436-445 (1987). 

15. E. A. Artyukhin, Recovery of the temperature depen- 
dence of the thermal conductivity coefficient from the 
solution of the inverse problem, High Temp. 19, 698-702 
(1981). 

16. T. T. Lam and W. K. Yeung, Determination of thermal 
conductivity by inverse analysis of the one-dimensional 
heat conduction problem, J. Thermophys. Heat Transfer 
9, 335-344 (1995). 

17. C. W. Gear, Numerical Initial Value Problems in Ordi- 
nary Differential Equations. Prentice-Hall, Englewood 
Cliffs, NJ (1971). 

18. F. John, Partial Differential Equations. Springer, New 
York (1982). 

19. L. H. Thomas, Elliptic problems in linear difference 
equations over a network, Watson Scientific Computer 
Laboratory Report, Columbia University, New York 
(1949). 

20. M.N. Ozisik, Heat Conduction, Appendix VI (2nd Edn). 
Wiley-Interscience, New York (1993). 

21. A. J. Silva and M. N, Ozisik, Inverse problem of sim- 
ultaneously estimating the timewise varying strength of 
two-plane heat sources. J. Appl. Phys. 73, 2132-2137 
(1993). 


